225 research outputs found

    Shape optimization for quadratic functionals and states with random right-hand sides

    Get PDF
    In this work, we investigate a particular class of shape optimization problems under uncertainties on the input parameters. More precisely, we are interested in the minimization of the expectation of a quadratic objective in a situation where the state function depends linearly on a random input parameter. This framework covers important objectives such as tracking-type functionals for elliptic second order partial differential equations and the compliance in linear elasticity. We show that the robust objective and its gradient are completely and explicitly determined by low-order moments of the random input. We then derive a cheap, deterministic algorithm to minimize this objective and present model cases in structural optimization

    Bernoulli free boundary problems under uncertainty: the convex case

    Get PDF
    The present article is concerned with solving Bernoulli's exterior free boundary problem in case of an interior boundary which is random. We provide a new regularity result on the map that sends a parametrization of the inner boundary to a parametrization of the outer boundary. Moreover, by assuming that the interior boundary is convex, also the exterior boundary is convex, which enables to identify the boundaries with support functions and to determine their expectations. We in particular construct a confidence region for the outer boundary based on Aumann's expectation and provide a numerical method to compute it

    Multiresolution kernel matrix algebra

    Full text link
    We propose a sparse arithmetic for kernel matrices, enabling efficient scattered data analysis. The compression of kernel matrices by means of samplets yields sparse matrices such that assembly, addition, and multiplication of these matrices can be performed with essentially linear cost. Since the inverse of a kernel matrix is compressible, too, we have also fast access to the inverse kernel matrix by employing exact sparse selected inversion techniques. As a consequence, we can rapidly evaluate series expansions and contour integrals to access, numerically and approximately in a data-sparse format, more complicated matrix functions such as AαA^\alpha and exp(A)\exp(A). By exploiting the matrix arithmetic, also efficient Gaussian process learning algorithms for spatial statistics can be realized. Numerical results are presented to quantify and quality our findings

    Uncertainty quantification for random domains using periodic random variables

    Full text link
    We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja, Kuo, and Sloan (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.Comment: 38 pages, 3 figure

    Uncertainty quantification for random domains using periodic random variables

    Get PDF
    We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja et al. (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner

    A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data

    Get PDF
    Stochastic collocation methods for approximating the solution of partial differential equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of dimensionality whereby increases in the stochastic dimension cause an explosion of the computational effort. We propose and analyze a multilevel version of the stochastic collocation method that, as is the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations to reduce the overall computational complexity. In addition, our proposed approach utilizes, for approximation in stochastic space, a sequence of multi-dimensional interpolants of increasing fidelity which can then be used for approximating statistics of the solution as well as for building high-order surrogates featuring faster convergence rates. A rigorous convergence and computational cost analysis of the new multilevel stochastic collocation method is provided, demonstrating its advantages compared to standard single-level stochastic collocation approximations as well as MLMC methods. Numerical results are provided that illustrate the theory and the effectiveness of the new multilevel method

    Wavelet boundary element methods – Adaptivity and goal-oriented error estimation

    Get PDF
    This article is dedicated to the adaptive wavelet boundary element method. It computes an approximation to the unknown solution of the boundary integral equation under consideration with a rate NdofsN^{−s}_{dof}, whenever the solution can be approximated with this rate in the setting determined by the underlying wavelet basis. The computational cost scale linearly in the number NdofN_{dof} of degrees of freedom. Goal-oriented error estimation for evaluating linear output functionals of the solution is also considered. An algorithm is proposed that approximately evaluates a linear output functional with a rate Ndof(s+t)N^{−(s+t)}_{dof}, whenever the primal solution can be approximated with a rate NdofsN^{-s}_{dof} and the dual solution can be approximated with a rate NdoftN^{−t}_{dof}, while the cost still scale linearly in NdofN_{dof}. Numerical results for an acoustic scattering problem and for the point evaluation of the potential in case of the Laplace equation are reported to validate and quantify the approach

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661
    corecore